
Tools to setup
great Python projects

PyCon Portugal, 2023

Introduction

I’ll talk about my experience with tools that can:

- Improve quality of a python project
- Reduce effort for some tasks

My suggestion: keep it iterative!

01 02

03

05

Package managers Code formatters

Code linters

Table of Contents

04Test libraries

Centralized configs 06Python manager
An useful extra

Duarte Pompeu
Software Engineer

 @ xgeeks

About me

linkedin.com/in/duartepompeu
Credits: Slidesgo, Flaticon, Freepik

Package managers

1

Package managers

Goal: reproducible application

Using requirements.txt: a good start.

Using a package manager: even better.

requirements.txt

Requirements file:

fastapi==0.103.1

Problems:

- Easy to make mistakes:
- forget to activate virtual env
- forget to write package down

- No sub-dependencies
- No separation between deployed and development

packages

Poetry

You define your desired dependencies in pyproject.toml:

[tool.poetry.dependencies]
python = "^3.11"
Flask = "2.2.*"

[tool.poetry.group.dev.dependencies]
pytest = "^7.3.1"

Poetry

Poetry keeps track of all dependencies in poetry.lock:

This file is automatically @generated by Poetry 1.5.1 and
should not be changed by hand.

[[package]]
name = "certifi"
version = "2023.7.22"
description = "Python package for providing Mozilla's CA
Bundle."
optional = false
python-versions = ">=3.6"
files = [

{file = "certifi-2023.7.22-py3-none-any.whl", hash =
"sha256:92d6037539857d8206b8f6ae472e8b77db8058fec5937a1ef3f54
304089edbb9"},

{file = "certifi-2023.7.22.tar.gz", hash =
"sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110
744495cb082"},
]

Code formatters

2

Formatting

Goal: consistent code style

A formatter can enforce rules to improve consistency.

My preference: black + isort

Black

“Any color you want, as long as it’s black”

It calls itself “the uncompromising code formatter”

Usage: black .

Isort

“Isort your imports, so you don’t have to.”

Usage: isort --profile=black .

Before
import random
import logging
def a_very_long_function_name(a_very_long_parameter_name,yet_another_very_long_parameter_name):

a_very_long_variable_name = a_very_long_parameter_name yet_another_very_long_parameter_name
logging.info(a_very_long_variable_name)
return a_very_long_variable_name

After
import logging
import random

def a_very_long_function_name(
a_very_long_parameter_name, yet_another_very_long_parameter_name

):
a_very_long_variable_name = (

 a_very_long_parameter_name + yet_another_very_long_parameter_name
)
logging.info(a_very_long_variable_name)
return a_very_long_variable_name

Code linters

3

Linting

Goal: reduce basic errors

A code linter can help detecting defects.

My preference: ruff with flake8 rules.

Alternatives: pylint, flake8, etc.

Ruff

“An extremely fast Python linter, written in Rust.”

Over 600 built-in rules, can replace linters such as flake8.

Usage:

ruff check .

ruff check . --fix

Ruff

Ruff

“An extremely fast Python linter, written in Rust.”

Over 600 built-in rules, can replace linters such as flake8.

Usage:

ruff check .

ruff check . --fix

Before

After

import logging
import random

def f(a, b):
x = 5
return a + b

def f(a, b):
return a + b

Test libraries

4

Testing

Goal: reduce bugs / manual testing

A test library / tool can help write tests, check coverage, etc.

Pytest

“... makes it easy to write small tests, yet scales to support complex
functional testing...”

Reduces boilerplate code, compared to unittest from the
standard library.

Supports features like parametrization, dynamic generation of
tests, etc.

Using unittest

import unittest

from demo.main import f

class TestF(unittest.TestCase):
def test_f(self):

 self.assertEqual(5, f(2, 3))

if __name__ == "__main__":
unittest.main()

Using pytest

from demo.main import f

def test_f():
assert f(2, 3) == 5

Using advanced pytest

import pytest
from demo.main import f

@pytest.mark.parametrize(
 “a,b,expected”,
[
 pytest.parameter(2,3,5, id=”positives”),
 pytest.parameter(0,0,0, id=”zeroes”),
 pytest.parameter(-2,-3,-5, id=”negatives”),
 pytest.parameter(2,-3,-1, id=”mixed”),

])
def test_f(a, b, expected):

assert f(a, b) == expected

Using advanced pytest

Others:

- fixtures
- Conditionals: only run this test if the other passes
- Dynamic generation of tests

Other test tools

coverage: reports statement coverage

hypothesis: test generic properties

locust: load testing

Centralized configs

5

Centralized configs

Goal: re-use configuration (CLI, IDE, CI/CD, …)

How? Store configs in pyproject.toml

pyproject.toml

[tool.isort]
profile = "black"

[tool.ruff]
select = [

"E", # pycodestyle
"F", # pyflakes
"B", # bugbear: finds potential bugs
"UP", # pyupgrade: warns about deprecated features, eg typing
"S", # flake8-bandit: security warnings

]
ignore = [

"E501", # line too long -> handled by formatter
]

Python manager
An useful extra

6

Python manager

The goal: manage different python versions

Why: working on projects with different python versions can
be complex

My preference: Use pyenv

pyenv

“...lets you easily switch between multiple versions of Python.”

Usage:

- pyenv install 3.11.4

- poetry env use ~./pyenv/versions/3.11.4/bin/python

Conclusion
Goals:

- Improve quality of a python project
- Reduce effort for some tasks

Package manager: reproducible application

Formatter: consistent code style

Linter: avoid basic errors

Test library: fewer bugs, less manual testing

Centralized configurations: avoid split/outdated configuration

Python manager: use different Python versions

That’s all folks!

linkedin.com/in/duartepompeu

Questions? Comments? Other interesting tools?

Go ahead!

Demo: github.com/duarte-pompeu/great-tools-pyconpt23

